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a b s t r a c t 

Breast cancer is one of the most common and deadliest cancers that affect mainly women worldwide, 

and mammography examination is one of the main tools to help early detection. Several papers have 

been published in the last decades reporting on techniques to automatically recognize breast cancer by 

analyzing mammograms. These techniques were used to create computer systems to help physicians and 

radiologists obtain a more precise diagnosis. The objective of this paper is to present an overview re- 

garding the use of machine learning and pattern recognition techniques to discriminate masses in digi- 

tized mammograms. The main differences we found in the literature between the present paper and the 

other reviews are: 1) we used a systematic review method to create this survey; 2) we focused on mass 

classification problems; 3) the broad scope and spectrum used to investigate this theme, as 129 papers 

were analyzed to find out whether mass classification in mammograms is a problem solved. In order to 

achieve this objective, we performed a systematic review process to analyze papers found in the most im- 

portant digital libraries in the area. We noticed that the three most common techniques used to classify 

mammographic masses are artificial neural network, support vector machine and k-nearest neighbors. 

Furthermore, we noticed that mass shape and texture are the most used features in classification, al- 

though some papers presented the usage of features provided by specialists, such as BI-RADS descriptors. 

Moreover, several feature selection techniques were used to reduce the complexity of the classifiers or 

to increase their accuracies. Additionally, the survey conducted points out some still unexplored research 

opportunities in this area, for example, we identified that some techniques such as random forest and 

logistic regression are little explored, while others, such as grammars or syntactic approaches, are not 

being used to perform this task. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

According to the World Health Organization (WHO) 1 breast

cancer is one of the most common type of cancers among women.

Each year, more than 1.5 million women suffer from this dis-

ease, which causes the greatest number of cancer-related deaths. In

2015, about 570,0 0 0 women died due to breast cancer, which rep-

resents 15% of all cancer deaths among women. Surveillance, Epi-

demiology, and Results Program (SEER) 2 provides statistics based

on the US population, and estimates that in 2017 there were more
∗ Corresponding author. 

E-mail addresses: rwandre@usp.br (R.W.D. Pedro), ariane.machado@usp.br (A. 

Machado-Lima), fatima.nunes@usp.br (F.L.S. Nunes). 
1 World Health Organization: http://www.who.int/en/ . 
2 Surveillance, Epidemiology, and Results Program: https://seer.cancer.gov . 
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0957-4174/© 2018 Elsevier Ltd. All rights reserved. 
han 250,0 0 0 new cases, representing 15% of all new cancer cases.

lso, SEER estimates more than 40,0 0 0 deaths are related to breast

ancer, which represents 6.8% of all cancer deaths in 2017. 

Mammogram X-ray is considered the most reliable and effec-

ive method in early detection of breast cancer at an early stage

 Li, Meng, Wang, Tang, & Yin, 2017 ). Although there are some

ules to differentiate between benign and malignant cases, only

5 - 30% of the masses referred to surgical biopsy are malignant

 Mohanty, Senapati, Beberta, & Lenka, 2013 ). Performing biopsies

n unnecessary situations can lead to several problems such as the

nancial cost of the procedure, the physical pain women are sub-

itted to, and the severe anxiety until the final diagnosis is con-

rmed ( Kele ̧s , Kele ̧s , & Yavuz, 2013; Todd & Naghdy, 2004 ). 

To help physicians compose a more precise diagnosis, sev-

ral computer-aided detection (CAD) and computer-aided diagno-

is (CADx) systems have been proposed over the last decades to,

https://doi.org/10.1016/j.eswa.2018.10.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2018.10.032&domain=pdf
mailto:rwandre@usp.br
mailto:ariane.machado@usp.br
mailto:fatima.nunes@usp.br
http://www.who.int/en/
https://seer.cancer.gov
https://doi.org/10.1016/j.eswa.2018.10.032


R.W.D. Pedro et al. / Expert Systems With Applications 119 (2019) 90–103 91 

Table 1 

Digital libraries used to find the studies. 

Library String Date Number of papers 

PubMed mammogra ∗ AND (classi ∗ OR recognition) AND (mass OR nodule) September, 2016 945 

Periódicos Capes mammogra ∗ AND (classi ∗ OR recognition) AND (mass OR nodule) September, 2016 1020 

PubMed mammogra ∗ AND (classi ∗ OR recognition) AND (mass OR nodule) May, 2017 62 

IEEE Xplorer (“Document Title”:mammogra ∗ AND (classification) AND (mass OR nodule) NOT (calcification OR 

microcalcification)) 

July, 2017 182 

Elsevier title(mammogra ∗ AND (classification) AND (mass OR nodule) AND NOT (calcification OR 

microcalcification)) 

July, 2017 25 

Springer Link mammogram AND classification AND (mass OR nodule) AND NOT (calcification AND 

microcalcification) 

July, 2017 46 

SPIE Digital Library mammogram AND (mass OR nodule) AND (classification) NOT (calcification OR microcalcification) July, 2017 37 

Medical Physics mammogram AND (mass OR nodule) AND (classification) NOT (calcification OR microcalcification) 

in Article Titles 

July, 2017 19 
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3 PubMed: https://www.ncbi.nlm.nih.gov/pubmed . 
4 Periódicos Capes: https://www.periodicos.capes.gov.br . 
5 IEEE Xplorer Digital Libray: http://ieeexplore.ieee.org/Xplore/home.jsp . 
6 Springer Link: https://link.springer.com . 
7 Elsevier: http://www.sciencedirect.com . 
8 SPIE Digital Libray: https://www.spiedigitallibrary.org/?SSO=1 . 
9 Medical Physics: http://aapm.onlinelibrary.wiley.com/hub/journal/10.1002/ 

(ISSN)2473-4209/ . 
espectively, detect and classify findings in the mammograms.

any pattern recognition and machine learning techniques have

een developed, employed and published by academic researchers

nd industrial companies. 

In this paper the objective is to present and discuss the results

f a systematic review to identify the state of the art, and possible

aps in the area of classification of masses in mammograms. 

Authors of Cheng et al. (2006) and Hadjiiski, Sahiner, and

han (2006) also performed a literature review with similar goals.

he main difference between these studies and this present pa-

er, is that this paper is more focused on mass classification us-

ng mammographic images (x-ray), which allows a deeper analy-

is of a greater number of papers. Here we present a summary of

he 129 papers, pointing out which techniques were used in the

lassification process, which features were used, which methods

ere employed to select the most discriminative features, which

lasses were used to classify the masses and the results achieved.

urthermore, we analyzed the methods used in the training and

ests phases, which metrics were used, the number of images the

esearchers used in their experiments, and which and how many

atabases were used. The cited reviews are more generic, merely

ouching the areas of mass segmentation, feature extraction and

election, the use of magnetic resonance imaging, and ultrasound

mages. 

Besides this introduction, this paper is divided into the follow-

ng sections: Section 2 describes the research method used in this

ystematic review. Section 3 contains a quantitative global analy-

is of the studied papers. In Section 4 we present a brief overview

f the papers analyzed. In Section 5 we discuss our findings and

oint out some research gaps in this area. Section 6 outlines the

nal conclusion of this work. 

. Research method 

The systematic review conducted in this paper is divided in

hree phases: 1) planning of a protocol used as research guidelines;

) searching and selection of the studies of interest according to

re-defined inclusion and exclusion criteria defined in the proto-

ol; and 3) analysis of the selected papers to understand the state

f the art in this research area. 

In our protocol we state the following research questions: 

• What are the techniques used to classify masses in mammo-

grams? 
• What are the features used as input to the classifiers? 
• What are the results achieved by the several classifiers and fea-

tures used? 

To answer these questions, we searched for papers in two dif-

erent timelines. The first one was in September 2016, followed by

 new search in May and July 2017. 
We created strings with the words mammogra ∗ classi ∗ recog-

ition mass nodule. We also excluded the word ‘microcalcifica-

ion’. Next, we queried the search engines PubMed 

3 , Periódicos

apes 4 , IEEE Xplorer Digital Library 5 , Springer Link 6 , Elsevier 7 , SPIE

igital Library 8 , and Medical Physics 9 . 

The criterion used to include a paper was: 

• papers that undertake the problem of breast mass classification

in an automatic or semi-automatic way using mammograms; 

The criteria used to exclude a paper were: 

• papers that exclusively address the problem of detecting breast

mass in mammograms; 
• papers that focus on presenting techniques used to segment

mammograms; 
• papers that address problems of classification in mammograms,

but are not related to masses, for example, microcalcifications; 
• papers that used other medical image modalities such as ultra-

sound or magnetic resonance; 

It should be noted that papers that reported using a new ap-

roach to segment mammograms were not excluded if they also

erformed mass classification after the segmentation technique

as applied. 

After removing the duplicated papers and applying the inclu-

ion/exclusion criteria defined above we included 129 papers to

his systematic review. Table 1 shows the strings used in each dig-

tal library. The process used to select the papers is summarized in

ig. 1 . 

. Global analysis 

.1. Published papers per year. Fig. 2 shows that this research area

as presented an increasing number of published papers over the

ast two decades. Also, the majority of the papers we analyzed

ere published in the last decade (98 papers - 76%). This in-

rease of published papers can be the result of more computational

ower, more sophisticated algorithms to extract the features and

erform the classification, and the increased number of available

mages to be used in the studies. As we performed our search in

he middle of 2017, we are not considering the entire year of 2017,

ut we can notice that the number of published papers on this

https://www.ncbi.nlm.nih.gov/pubmed
https://www.periodicos.capes.gov.br
http://ieeexplore.ieee.org/Xplore/home.jsp
https://link.springer.com
http://www.sciencedirect.com
https://www.spiedigitallibrary.org/?SSO=1
http://aapm.onlinelibrary.wiley.com/hub/journal/10.1002/(ISSN)2473-4209/
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Fig. 1. The process to select the papers that were included in this systematic review. 

Fig. 2. Most used techniques used to discriminate masses over the years. 
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topic has been decreasing since 2015. Yet, Fig. 2 shows that this

research area is dominated by the use of artificial neural networks,

support vector machine and K-nearest neighbors, specially in the

last decade. 

3.2. Databases. Fig. 3 shows the most common databases used in

the studies. The two most used were Digital Database for Screening

Mammography (DDSM) cited in 49 papers (38%) and the Mammo-

graphic Image Analysis Society (MIAS) database that appeared in

39 studies (30%). Yet, 15 studies (12%) did not mention where the

analyzed images came from. DDSM is a public database provided

by the University of South Florida that contains more than 2,500

studies (each study includes two images of each breast) while

MIAS database is also a public database that contains 322 images

(161 pairs). These two databases are the most common as they

provided a great number of images and are free to use provided

the license agreements are respected. On the other hand, some

studies used private databases, such as the database provided by

Alberta Program for the Early Detection of Breast Cancer and the

database provided by University of Chicago. Private databases tend

to appear less frequently in the studies because it is more difficult

to have access to them. 

It was observed that the majority of the papers used just one

database (88 papers - 77%), and only three papers (3%) of the an-
lyzed studies used images from three or more sources. It is im-

ortant to mention that 15 papers (12%) did not specify how many

atabases they used to obtain the images. 

Fig. 4 shows the number of images used in the studies. We can

ee that 28 papers (22%) used 100 or fewer images to train the

lassifiers and perform the tests. Also, 30 papers (23%) used be-

ween 101 and 200 images and, 34 papers (26%) used between 200

nd 500 images. Furthermore, six papers (5%) did not specify the

umber of used images. It was observed that 45% of the papers use

00 or less images. On the one hand, it shows that many images

re not really necessary in order to train the classifiers with rela-

ion to this problem. For instance, McLeod and Verma (2013) used

00 images and achieved the lowest and highest accuracies of 93%

nd 98%, respectively. On the other hand the built classifiers may

ot be generic enough to deal with a variety of other images that

ere not used in the study. 

.3. Features selection. Several techniques were employed to select

he most powerful features to discriminate masses. The genetic al-

orithm was the most commonly used (6% of the papers), for in-

tance ( Chaieb, Bacha, Kalti, & Lamine, 2014; Rouhi, Jafari, Kasaei,

 Keshavarzian, 2015 ), followed by selection procedures that used

ilks’ lambda criterion that appeared in 5% of the papers - ( Li

t al., 2008; Shi et al., 2008 ), and Principal Component Analysis
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Fig. 3. Most frequent databases used in the analyzed studies. 

Fig. 4. Number of analyzed images per paper. 
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PCA) also employed in 5% of the studies - ( Chaieb et al., 2014;

uramatsu, Hara, Endo, & Fujita, 2016 ). 

.4. Classification techniques. During our analysis, we reviewed the

se of many pattern recognition and machine learning techniques

o classify the masses in mammograms. Fig. 2 shows the most

ommon techniques used in the analyzed papers. Artificial Neural

etwork (ANN) with its variations (57 papers - 44%) and Support

ector Machine (SVM) with its variations (41 papers - 34%) are the

wo most commonly employed techniques. K-Nearest neighbors,

he third most frequent technique appeared in 22 papers (17%),

ollowed by linear discriminant analysis (18 papers - 14%) and de-

ision trees (10 papers - 8%). Moreover, several other techniques

ppeared in the studies, but not as frequently. An analysis of the

apers is displayed in Section 4 . 

.5. Validation and test techniques. Holdout approach was the most

sed validation and test technique cited in 29% of the papers. Next,
oth k-fold cross validation and leave-one-out appeared in 27% of

he studies. Fifteen of the analyzed papers (12%) did not mention

ow the dataset was divided for training and tests. Holdout was

he most employed technique probably because it is the fastest

ethod to use. It consists of splitting the dataset into two parts,

ne for training and the other for testing. Typically, the training

et is bigger than the test set. Fig. 5 shows that when there is a

mall number of images (less than 100 images) the researchers

refer to use leave-one-out technique, but as the number of im-

ges increases they tend to use holdout or k-fold cross validation.

ootstrapping and resubstitution were barely used. 

.6. Evaluation metrics. Accuracy, the most common metric used to

alidate a study, appeared in 80 papers (62%). The following most

ommon metrics were the area under the ROC curve (AUC), sen-

itivity and specificity, which appeared in 74 papers (57%), 38 pa-

ers (29%), and 37 papers (29%), respectively. There were others
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Fig. 5. Techniques used to test and validate the proposed approaches. 

Table 2 

Definition of metrics used to validate the studies. 

Metrics Definition 

Accuracy (or classification rate) T P+ T N 
P+ N 

Sensitivity (or true positive rate) TP 
P 

Specificity (or true negative rate) TN 
N 

Precision (or positive predictive value) TP 
TP+ FP 

Negative predictive value TN 
TN+ FN 

Fall-out (or false positive rate) FP 
N 

False negative rate FN 
P 

Matthews correlation coefficient T P.T N−F P.F N √ 

(TP + FP ) . (TP + FN ) . (TN + FP) . (TN + FN ) 

Area under the ROC curve (AUC) A ROC curve is plotted considering the sensitivity in function of the 1 - specificity. 

Every point on the ROC curve represents a pair (sensitivity/specificity) corresponding 

to a particular decision. The AUC is used to measure how well a parameter is able to 

distinguish between two classes (benign vs. malignant, diseased vs. normal, and so on) 
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metrics in the analyzed papers, but they did not appear frequently.

In Table 2 we can see a definition of each metric, where P is the

number of positive examples, N is the number of negative exam-

ples, TP is the true positive results, TN is the true negative results,

FP is the false positive results and FN is the false negative results. 

3.7. Classes. One hundred papers discriminate masses considering

only the benign and malignant classes (78%). Also, there were pa-

pers that consider some of the following classes: normal, round,

lobular, oval, irregular, stellate, and BI-RADS classes. 

4. Pattern recognition techniques 

In this section we present an analysis of the papers included

in this systematic review. We grouped the studies considering the

technique used to discriminate masses, i.e., artificial neural net-

work, support vector machine, decision trees and so on. From each

paper, we extracted the techniques they used, the features that

were employed, the methods to select the most powerful fea-

tures, the classes used in the classification, and the results they

achieved. 
.1. Artificial neural networks. From the 129 papers analyzed in this

ystematic review, 29% (38 papers) used ANN as the unique classi-

er to discriminate mammographic masses. 

We can observe that 29% (11 from 38 papers) employed some

echnique to select the most discriminant features while 71% did

ot (Table S2 in supplementary material). The most common tech-

iques to select the most important features were genetic algo-

ithms ( Bhattacharya, Sharma, Goyal, Bhatia, & Das, 2011; Suganthi

 Madheswaran, 2009; 2012; Tan, Pu, & Zheng, 2014a ) and corre-

ation based on feature selection ( Delogu, Fantacci, Kasae, & Retico,

007; Nugroho, Faisal, Soesanti, & Choridah, 2014a; 2014b ). 

When analyzing the features employed, it can be seen that

here are usually three types: shape, texture and information pro-

ided by radiologists. Examples of shape features are area, perime-

er, circularity, Zernike moments and so forth. As for texture fea-

ures, there are features extracted from gray level co-occurrence

atrices, density, contrast, local binary patterns, wavelets and so

n. The information provided by radiologists is patient age and

I-RADS. However there are several papers that have used all

hree types of features together or at least a combination of

wo types. For instance, in Laroussi, Ayed, Masmoudi, and Mas-

oudi (2013) Zernike moments and local binary patterns were
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sed to classify masses as benign or malignant and they achieved

n AUC of 0.96. Yet, considering the papers in Table S2 we noticed

hat Jiao, Gao, Wang, and Li (2017) did not use some of these well

nown features, instead they used features learned through convo-

utional neural networks and achieved an accuracy of 97.4%. 

The most common classes used in the classification process

re benign and malignant (79% - 30 papers). However, some pa-

ers also use the class normal and perform a classification us-

ng three classes (benign, malignant and normal), for example

dwards (2004) ; Nugroho, Faisal, Soesanti, and Choridah (2014b) .

he authors of Chokri and Farida (2017) not only used benign and

alignant classes, but also used BI-RADS classes (2, 3, 4 and 5) to

erform the classification. Yet, in Chokri and Farida (2017) , when

he classification is performed using more classes the accuracy of

he classifier decreases. 

In terms of results, it is quite difficult to compare all the papers

escribed in Table S2, since they used many different databases,

ifferent images, different methods to perform the tests, and they

lso presented the results in different ways. The most common

ays of presenting the results are in the form of accuracy and the

rea of the ROC curve. In order to explore this point, we selected

ome papers that are quite similar in order to allow a comparison

s fair as possible. Section 5 provides this comparison. 

In terms of classifier, many different types/architectures of

rtificial neural networks were used. For example, single layer

nd multi-layer perceptron was used in Tralic, Bozek, and Gr-

ic (2011) and, in this case, the single layer perceptron achieved

he best results in the classification problem. The other types of

NN and the papers that used them are the following: 1) con-

olution neural networks ( Jiao et al., 2017 ); 2) probabilistic ANN

 Patil, Udupi, & Bhogale, 2013; Yang et al., 2005 ); 3) Bayesian ANN

 Edwards, 2004; Edwards, Lan, Metz, Giger, & Nishikawa, 2003; Li

t al., 2008 ); 4) resilient ANN ( Serifovic-Trbalic, Trbalic, Demirovic,

rljaca, & Cattin, 2014 ); 5) an ensemble of ANN incorporating k-

eans ( Leod & Verma, 2012 ); 6) fuzzy ANN ( Azevedo et al., 2015a;

ele ̧s et al., 2013; Rathi & Aggarwal, 2014 ); and 7) an adaptive

euro-fuzzy inference system ( Bhattacharya et al., 2011; Mousa,

unib, & Moussa, 2005 ). 

Fig. 2 shows the number of published papers that used ANN

s classifier over the years. Between 2012 and 2014, this number

chieved its peak, and then declined during 2015 to 2017. It should

e noted that this fact does not mean the researchers have stopped

sing ANN, but rather that they are trying new approaches to solve

he problem of discriminating masses in mammography. 

.2. Support vector machines. SVM was employed in 16% (21 pa-

ers) of the analyzed papers as the unique classifier and it was

he second most used technique to classify masses. Table S3 in the

upplementary material summarizes all these papers. 

From these 21 papers, 8 (38%) used some feature selection tech-

iques. While genetic algorithm is the most employed technique

n papers that used only ANN, for SVM the most used techniques

o select the most appropriate features are PCA and LDA ( Hussain,

han, Muhammad, & Bebis, 2012; Khan, Hussain, Aboalsamh, & Be-

is, 2017 ). Genetic algorithm appeared only in Azizi, Zemmal, Sell-

mi, and Farah (2014) . 

Gabor features appeared in three papers of the same research

roup ( Hussain et al., 2012; Khan et al., 2017; Khan et al., 2016 ).

hese papers perform comparison between different Gabor fea-

ures and different ways of extracting them. The results can be

een in Table S3. The other paper that used Gabor features was

bdel-Nasser, Melendez, Moreno, and Puig (2016) , but it combined

hese features with histogram of oriented gradient, local binary

atterns, local directory number, and Haralick’s features, achieving

n AUC of 0.78. 
In general terms, the features are pretty much the same ones

sed in papers that employed ANN. However, some papers re-

orted using different features such as measures extracted from

ipley’s K function in Oliveira Martins, da Silva, Silva, de Paiva,

nd Gattass (2007) , Moran’s index and Geary’s coefficient in

unior, de Paiva, Silva, and de Oliveira (2009) and central and Hu

oments in Azizi et al. (2014) . In these three papers the best accu-

acy was of 94.94% achieved by Oliveira Martins et al. (2007) . Addi-

ionally, Jamieson, Drukker, and Giger (2012) used features learned

y using adaptive deconvolutional networks and achieved an AUC

f 0.71, while Ovalle, Gonzlez, Ramos-Polln, Oliveira, and Guevara-

pez (2016) employed convolutional neural networks to learn the

eatures obtaining an accuracy of 94%. 

The majority of papers (18 papers - 85.7%) performed the

lassification using benign and malignant as the possible classes.

he exceptions were Cheikhrouhou, Djemal, Sellami, Maaref, and

erbel (2008) , which used not only benign and malignant but

lso four BI-RADS classes; Khan et al. (2016) which used mass,

on-mass, benign and malignant classes; and Kanadam and

hereddy (2016) that used as classes calcifications, circumscribed,

piculated, ill-defined, architectural distortions, asymmetry(s) and 

ormal. 

.3. K-nearest neighbors. KNN as a unique classifier to distinguish

asses in mammograms appeared in 6% (8 papers) which was

he third most commonly used technique. An overview of these

esearch projects is shown in Table S4 in the supplementary

aterial. 

Just one of these papers (12%) focus on the problem of selecting

he most suitable features, but deal with it using the classifier er-

or with a sequential forward procedure, achieving an AUC of 0.79

hen worked with a single image view and 0.84 in a case based

iew ( Varela, Muller, & Karssemeijer, 2003 ). 

Studies regarding the use of texton histograms as features were

resented in Li, Chen, Rohde, Yao, and Cheng (2015) ; Li, Chen, Wei,

eng, and Cheng (2016) to classify masses as benign and malignant

nd the AUC obtained for these research projects were 0.92 and

.91, respectively. The other papers used more common features

uch as shape features, wavelets, features extracted from gray level

o-occurrence matrix, and other features. 

Eltoukhy, Faye, and Samir (2010) was the only study that con-

idered more classes than benign and malignant. The authors clas-

ified the region of interest (ROI) as benign, malignant, normal

nd diverse abnormalities. Regarding only normal, benign and ma-

ignant classes, the highest classification rate was 94.07% using

urvlets as features. 

As seen in Table S4, the number of published papers that used

nly KNN (8 papers) as a classifier is small when compared with

he number of papers that used only ANN (38 papers) or only SVM

21 papers). However, in Fig. 2 it can be seen that KNN is still being

sed, especially after the year of 2009 (19 papers of studies that

sed only KNN or used KNN together with other techniques). 

.4. Clustering. Clustering was applied in seven of the analyzed pa-

ers (5%) to classify masses. A summary of each paper can be seen

n Table S5 in the supplementary material. 

From these studies, Bruce and Adhami (1999) ; Bruce and

allergi (1999) ; Bruce, Kallergi, and Mendoza (1999) used Eu-

lidean distance to separate the masses among the classes. All

hese papers belong to the same research group, which separated

he masses in the following classes: round, lobular, irregular. The

ighest classification rate in these papers was 80% obtained in

ruce and Adhami (1999) . 

Mahalanobis distance was used in Azevedo et al. (2015b) ;

udigonda, Rangayyan, and Desautels (20 0 0) ; Santaella, Schi-

bel, Patrocinio, Nunes, and Romero (2003) . In
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Azevedo et al. (2015b) the authors used Mahalanobis distance with

morphological extreme learning machines and disclosed the re-

sults in terms of kappa index (0.66) considering benign, malignant

and normal classes. The work in Mudigonda et al. (20 0 0) achieved

an accuracy of 85% but considered only benign and malignant

classes, while Santaella et al. (2003) achieved the best AUC of 0.97

separating the masses as spiculated and circulate. 

In Meriem, Merouani, and Lakhdar (2015) fuzzy c-means were

used to separate masses as benign, malignant and normal. The fea-

tures were based on Zipf curves and the accuracy obtained was

87%. 

Analyzing Table S5 we see that few papers were published

throughout the years that solved the problem of mass classification

using clustering. All papers that used Euclidean distance belong

to the same research group and were published in 1999. In 2015

we found two papers published, one used Mahalanobis distance

with morphological extreme learning machines and the other used

fuzzy c-means. 

4.5. Linear discriminant analysis. The fifth most used technique

was linear discriminant analysis in seven papers (5%). Table S6 in

the supplementary material shows a summary of each one of these

papers. 

Three of these papers belong to the same research group

( Hadjiiski et al., 2001; Sahiner, Chan, Petrick, Helvie, & Goodsitt,

1998; Shi et al., 2008 ). In Sahiner et al. (1998) the authors used a

rubber band straightening transform and texture analysis to clas-

sify masses as benign and malignant. In Hadjiiski et al. (2001) an

analysis was performed on temporal changes of mammographic

features and in Shi et al. (2008) the authors performed a classi-

fication based on level set segmentation and patient information.

The highest AUC achieved was 0.94 in Sahiner et al. (1998) , that is

the oldest paper that used only LDA. 

From these seven papers, the study ( Rangayyan, Mudigonda, &

Desautels, 20 0 0 ) used different classes than just benign and ma-

lignant. In fact, the chosen classes were benign, malignant, circum-

scribed and spiculated. The accuracy for benign vs. malignant clas-

sification was of 81.5% while this metric was of 90.7% for circum-

scribed vs. spiculated. 

The works in Bojar and Nieniewski (2008) ; Mudigonda, Ran-

gayyan, and Desautels (1999) used Fisher’s linear discrimi-

nant as a classifier instead of its generalization (LDA). The

best results achieved in terms of AUC by Bojar and Nie-

niewski (2008) was 0.724 using only one feature they proposed,

while Mudigonda et al. (1999) achieved an accuracy of 81% in the

classification process. 

The newest paper we found in this systematic review, that used

only LDA, was published in 2008 as shown in Table S6. This means

that the researchers are no longer using LDA as the only classifier

(at least it is not as popular as other techniques) to solve the prob-

lem of mass classification. 

4.6. Naïve Bayes. In Table S7 in the supplementary material there

is a summary of the four papers (3%) that used only Naïve Bayes

as classifier to discriminate masses. 

From the same research group, the studies ( Benndorf, Burn-

side, Herda, Langer, & Kotter, 2015a; Benndorf et al., 2015b )

used BI-RADS descriptors and patient age as features. The work

in Benndorf et al. (2015a) achieved the best AUC of 0.90

classifying masses in benign and malignant categories, while

Benndorf et al. (2015b) achieved an AUC of 0.935 using BI-RADS

category as feature and 0.876 without this feature classifying

masses as BI-RADS categories (0 - incomplete, 2 -benign, 3 - prob-

ably benign, 4 - suspicious abnormality, 5 - highly suspicious of

malignancy). 
The study in Mencattini, Salmeri, Rabottino, and Sali-

one (2010) used shape and texture features to classify masses as

enign or malignant, achieving an average AUC of 0.88 selecting

he most appropriate features based on classifier error. On the

ther hand, in Wu et al. (2013) the authors employed mutual

nformation using Shannon’s entropy measure to select the most

dequate features composed of shape features, density and patient

nformation such as age, hormone therapy, history of breast cancer

n family and so on. The highest AUC achieved was 0.807. 

Table S7 shows that the four papers we found were published

fter 2010. Actually, it was one paper in 2010, another one in 2013

nd two papers from the same research group in 2015, showing

hat Naïve Bayes is not often used in the task of discriminating

asses. If we consider the papers that did not use BI-RADS as fea-

ures, we see that the best result was an AUC of 0.88, which al-

hough is not a bad result, it is also not the state of art. 

.7. Other techniques. In Table S8 in the supplementary material

e have the papers that used other techniques to build the clas-

ifiers, such as decision trees, rule-based systems, mixture models,

quared discriminant analysis, discriminant function and Bayesian

lassifier, genetic programming and artificial immune systems. 

Decision trees were used in only three (2%) of the analyzed pa-

ers as the only classifier to discriminate masses. An overview of

ll these papers can be seen in Table . 

Shape features were used in Todd and Naghdy (2004) ;

adivel and Surendiran (2013) . The study ( Todd & Naghdy, 2004 )

iscriminated the masses as benign and malignant and pro-

ided the results in terms of false-negative rate (0%) and false-

ositive rate (9.3%), while the study in Vadivel and Surendi-

an (2013) classified the masses as round, oval, lobular and ir-

egular, achieving an accuracy of 87.76% considering all classes. In

ohanty et al. (2013) the authors used texture features to discrim-

nate masses as benign and malignant and as result they achieved

n AUC of 0.995. 

Decision trees are quite rare considering all the techniques used

o build classifiers to perform classification of masses in mammo-

rams. From the three papers we analyzed one was published in

004 and the others in 2013. 

Only two (1%) of the analyzed papers built a rule-based sys-

em to classify masses. Table S8 summarizes these papers. The au-

hors of Javadi and Faez (2012) developed a system that makes

se of fuzzy rules to classify masses as benign and malignant.

he input for the classifier is wavelet coefficients selected using a

article swarm optimization procedure. The accuracy of the sys-

em was 93.41%. The other paper created a rule-based system

here roundness of a mass was the only feature used to discrim-

nate the masses as benign, probably benign and possibly malig-

ant, probably malignant and possibly benign, and malignant ( Al-

ajdawi, Biltawi, & Tedmori, 2015 ). The specificity and sensitivity

f the system were 96.2% and 94.4%, respectively. 

Although rule-based systems are not so popular, these papers

re quite new, especially in Al-Najdawi et al. (2015) which shows

hat some researchers are trying different approaches to solve the

roblem of mass classification. 

Mixture models were used by just two papers (1%). An

verview of these papers can be seen in Table S8. The work in

lguebaly and Bouguila (2013) used Dirichlet mixture model to-

ether with features based on local binary pattern and Haralick’s

eatures to discriminate masses as benign, malignant and normal.

he model worked better with local binary pattern features pro-

ucing an accuracy of 84.21%. A Gaussian mixture model was de-

eloped in Mishra and Ranganathan (2014) to classify masses as

enign and malignant. Energy and entropy served as input to the

lassifier that improved the diagnostic of breast cancer of over 95%.
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10 The metric accuracy was used only when the AUC was not available for a spe- 

cific study. 
Similar to what happened with the papers that proposed ruled

ase systems, the mixture models are not really popular, but as

hey were published in 2014 and 2015, they are relatively new. This

act can be used to confirm that the researchers are trying new

echniques (or at least not so explored techniques) in this area. 

The study ( Leichter et al., 20 0 0 ) used squared discriminant

nalysis to build a CAD system that uses features based on the

egree of spiculation of masses to help radiologists discriminate

asses as benign and malignant. Without the system the AUC

btained by the radiologists was 0.66, but with the CAD they

chieved an AUC of 0.81. An overview of this paper can be seen

n Table S8. In Rangayyan and Nguyen (2007) shape features were

sed to serve as input to the classifier built using discriminant

unction together with a Bayesian classifier to classify masses as

enign and malignant. The tests were performed using MIAS and

lberta databases. The AUC for the combined database was 0.93. 

A genetic programming was used to create a classifier in

andi, Nandi, Rangayyan, and Scutt (2006) . The authors used a ge-

etic algorithm to select the most powerful features in a set that

ontains shape and texture features and classified the masses as

enign and malignant classes. The range of the classification rate

as from 90.1% to 100% depending on the group of selected im-

ges. Table shows an overview of this paper. 

Artificial immune systems appeared in just one of the analyzed

apers. The study in Dehache and Souici-Meslati (2015) used this

echnique applying a KNN approach together with BI-RADS fea-

ures and patient age to separate masses as benign and malignant.

he results can be seen in Table S8. 

Table S8 shows an overview of the only paper that used ra-

ial basis function network as a technique to classify masses. In

hang, Wang, Shin, Hruska, and Son (2015) , the authors used four

ype of features based on Fourier index/descriptors, compactness

nd fractal dimension, achieving an AUC of 0.99. 

.8. More than one type of classifier. We analyzed 32 papers (25%)

hat used more than one technique to classify masses. Some of

hese papers combined different techniques to create a classifier,

hile others used different classifiers to test the effectiveness of

 new feature or a segmentation method or to test feature selec-

ion approaches. For instance, the authors of Huo et al. (1998) ;

uo, Maryellen Giger, Vyborny, Wolverton, and Metz (20 0 0) cre-

ted a hybrid classifier using ANN and rule-based systems, while in

ouhi et al. (2015) ANN, SVM, Naïve Bayes, KNN and random for-

st were used to classify masses segmented using region growing

nd cellular neural network techniques. In Chaieb et al. (2014) sev-

ral feature selection techniques were tested such as genetic al-

orithm, tabu search, ReliefF algorithm, PCA and sequential for-

ard/backward selection. An overview of each paper that used

ore than one technique is shown in Table S9 in the supplemen-

ary material. 

The most common classifiers were SVM (20 papers - 62%), ANN

19 papers - 59%), KNN (14 papers - 44%) and LDA (11 papers -

4%). These four classifiers are almost the same most used clas-

ifiers in papers that used only one technique to classify masses.

owever, there is a subtle difference when considering papers that

sed only one technique, once ANN was the most employed tech-

ique, followed by SVM, KNN and Clustering/LDA. 

In Table S9 we see there is no prevalence of any method to se-

ect the most powerful features. The techniques used were fractal

nalysis using MANOVA that appeared in Georgiou, Mavro-

orakis, Dimitropoulos, Cavouras, and Theodoridis (2007) ;

avroforakis, Georgiou, Dimitropoulos, Cavouras, and Theodor-

dis (2006) ; logistic regression was used in Huang, Hung, Lee, Li,

nd Wang (2012) ; Rabidas, Chakraborty, and Midya (2017) ; genetic

lgorithm was shown in Chaieb et al. (2014) ; Rouhi et al. (2015) ;

VM with extreme learning machine was presented in
ie, Li, and Ma (2016) and SVM using mutual information

eature selection filter appeared in Liu and Tang (2014) ; in

uramatsu et al. (2016) PCA was used; a measure of purity

ased on entropy was employed in Zhang, Tomuro, Furst, and

aicu (2012) ; and the classifier error was used to select the

ost discriminant features in Hapfelmeier and Horsch (2011) ;

hademi, Sahba, Venetsanopoulos, and Krishnan (2009) . 

The features used are pretty much the same ones found in

he previous analyzed papers, i.e. shape features, wavelets coeffi-

ients, Zernike moments, texture features, local binary pattern fea-

ures, features extracted from Fourier domain, BI-RADS, Hu mo-

ents, statistical features, features extracted from Ripplet-II coeffi-

ient matrix and so on. 

. Discussion 

.1. Techniques. Although several techniques have been used to

iscriminate masses in mammograms, Fig. 2 illustrates that three

echniques have dominated this area: artificial neural network,

upport vector machine, and K-nearest neighbors. Despite the good

esults achieved with these techniques, for example, ANN was

sed in McLeod and Verma (2013) with an accuracy of 98%;

VM was employed in Khan et al. (2016) and obtained a AUC of

.948; KNN appeared in Aroquiaraj and Thangavel (2014) with a

UC of 0.973, other techniques were also able to achieve simi-

ar results. Naïve Bayes was explored in only five studies but in

enndorf et al. (2015b) good results were found in terms of AUC

0.935 and 0.876 depending on the features used). Another exam-

le is the usage of rule-based systems that appeared only in Al-

ajdawi et al. (2015) ; Javadi and Faez (2012) achieving sensibility

nd specificity higher than 90%, which shows that there is oppor-

unity for this technique to be further explored. Differently from

ig. 2 , in Table 3 we can see an abundance of techniques found

n the studies, but that received little attention in this context and

hich can be further explored. 

The papers reviewed in this survey are very diverse once they

se different databases, define different classes for classification

nd show different performance metrics. In order to perform a

omparison among some of them, as fair as possible, Table 4

hows studies published since 2014 that used only DDSM and

IAS databases, and classified the masses into two classes (benign

nd malignant). These articles used the metrics AUC or accuracy 10 

o show the results. 

Among the four studies that used DDSM database and showed

heir results in terms of accuracy, two of them ( Azizi et al., 2014;

emmal, Azizi, & Sellami, 2015 ) used SVM to classify the masses,

hile the others used ANN ( Chokri & Farida, 2017; Jiao et al., 2017 ).

he highest accuracy was 97.4% achieved in Jiao et al. (2017) , which

onsiders features learned using convolutional neural networks. 

Considering the papers that used DDSM database and showed

heir results in terms of AUC, the best result was achieved using ra-

ial basis function network as classifier (AUC of 0.99) with shape-

ased features ( Zhang et al., 2015 ), followed by Wang, Li, and

ao (2014) that used SVM and latent spatial features, as well as

tatistical marginal characteristics as input to the classifier (AUC of

.965). The third and the fourth best results were also reached in

tudies of the same research group that used SVM and Gabor fea-

ures ( Khan et al., 2017; Khan et al., 2016 ). In Khan et al. (2017) an

UC of 0.95 was achieved while in Khan et al. (2016) the AUC was

f 0.948. 

From the five studies using the MIAS database, two

howed their results in terms of accuracy. In Jothilakshmi and
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Table 3 

Least used techniques to classify mammographic masses. 

Technique Papers 

Radial basis network/function Georgiou et al. (2007) ; Jaleel, Salim, and S (2014) ; Zhang et al. (2015) 

Mixture model Elguebaly and Bouguila (2013) ; Mishra and Ranganathan (2014) 

Logistic regression Huang et al. (2012) ; Rabidas et al. (2017) 

Artificial immune systems Dehache and Souici-Meslati (2015) 

Discriminant function and Bayesian classifier Rangayyan and Nguyen (2007) 

Conditional inference trees Hapfelmeier and Horsch (2011) 

Genetic programming Nandi et al. (2006) 

Squared discriminant analysis Leichter et al. (20 0 0) 

Table 4 

Comparison of papers published since 2014 that used only one classifier. 

Paper Technique Database Features Result 

Zemmal et al. (2015) SVM DDSM Texture features; central and Hu moments Accuracy = 93.1% 

Azizi et al. (2014) SVM DDSM texture features; central and Hu moments Accuracy = 93% 

Chokri and Farida (2017) ANN DDSM Texture features; shape features; margin features; patient age Accuracy = 88.02% 

Jiao et al. (2017) ANN DDSM Features learned using convolutional neural networks Accuracy = 97.4% 

Zhang et al. (2015) Radial basis function 

network 

DDSM Fourier irregularity index, compactness index, fractal 

dimension, Fourier-descriptor-based shape factor 

AUC = 0.99 

Li et al. (2016) KNN DDSM Texton histograms AUC = 0.91 

Wang et al. (2014) SVM DDSM Latent spatial features; statistical marginal characteristics AUC = 0.965 

Khan et al. (2017) SVM DDSM Gabor features AUC = 0.95 

Benndorf et al. (2015a) Naïve Bayes DDSM BI-RADS descriptors and patient age AUC = 0.90 

Li et al. (2015) KNN DDSM Texton histograms AUC = 0.92 

Khan et al. (2016) SVM DDSM Gabor Features AUC = 0.948 

Jothilakshmi and Raaza (2017) SVM MIAS Texture features Accuracy = 94% 

Jiao et al. (2017) ANN MIAS Features learned using convolutional neural networks Accuracy = 96.7% 

Serifovic-Trbalic et al. (2014) ANN MIAS Zernike moments AUC = 0.8920 

Aroquiaraj and Thangavel (2014) KNN MIAS Statistical and texture features AUC = 0.973 

Abdel-Nasser et al. (2016) SVM MIAS Local binary patterns; local directory number; histogram of 

oriented gradient; texture features, Gabor features 

AUC = 0.78 
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Raaza (2017) the authors used SVM and texture features, achieving

an accuracy of 94% whereas in Jiao et al. (2017) the authors used

ANN with features learned using convolutional neural networks

accomplishing an accuracy of 96.7%. 

The other studies (three papers) used MIAS database and

showed their results in terms of AUC. The best AUC was 0.973

accomplished using KNN as classifier, together with statistical

and texture features ( Aroquiaraj & Thangavel, 2014 ). In Serifovic-

rbalic et al. (2014) the authors used Zernike moments as in-

put to an ANN and obtained AUC of 0.8920, while in Abdel-

Nasser et al. (2016) the authors employed SVM with a combination

of different f eatures (local binary patterns, local directory number,

histogram oriented gradient, texture and Gabor features) achieving

an AUC of 0.78. 

Jiao et al. (2017) appears twice in Table 4 for different

databases: DDSM database with accuracy of 97.4% and MIAS

database with accuracy of 96.7%. These results show that the over-

all accuracy of a classifier can vary when it is applied on different

databases. 

Table 5 summarizes some of the most striking studies reviewed

in this survey. Although several works used similar approaches, pa-

pers in Table 5 were selected due to their contribution to this re-

search area and because they presented details on the techniques

employed. Furthermore, all these papers presented quantitative re-

sults regarding the experiments performed. 

Despite the fact that many techniques were employed to clas-

sify the masses, we did not find any paper that used gram-

mars or syntactic approaches during the systematic review. Es-

pecially in last decade, grammars have been applied in pattern

recognition of images to recognize and build objects, in layout

recognition and image segmentation ( Pedro, Nunes, & Machado-

Lima, 2013 ). Grammars were already applied in medical images to

deal with 3D visualizations of coronary vessels ( Trzupek, Ogiela,

& Tadeusiewicz, 2011 ) and to perform leg bone fracture analysis
 Ogiela, Tadeusiewicz, & Ogiela, 2008 ). However, none of the stud-

es presented in this review used syntactic approaches to address

he problem of masses classification. Performing an exploratory re-

iew we found only one paper that used grammars together with

NN to discriminate tumors ( Tahmasbi, Saki, & Shokouhi, 2011 ),

chieving an accuracy of 91.38% and AUC of 0.858. This paper did

ot appear in our systematic review because when searching in the

EEE Xplorer database we limited our query to search only in Doc-

ment Title (as seen in Table 1 ) due to the high number of studies

ound when this constraint is not imposed. 

.2. Databases. We also suspect that the vast majority of the

ublished papers are database-dependent, since the majority of

he studies used only one database (77%). One of the difficul-

ies of working with different databases is that the images are

cquired with different devices and stored with different spatial

nd pixel resolutions and format. Because of that, each dataset

emands a different image preprocessing in order to standardize

ll images, which by itself it can be a research area. Some pa-

ers have presented studies regarding these areas, for example,

angayyan, Nguyen, Ayres, and Nandi (2010) presented a study

n the effect of pixel resolution in the classification process and

uo et al. (20 0 0) presented a study regarding the robustness of

 method when dealing with images acquired from different de-

ices. Nevertheless, we believe that this area should be further

xplored, this way the pattern recognition/machine learning tech-

iques could be used with different data sources and present con-

istent results. 

In general, the studies try to use a balanced number of images

f each class, so they can create a less biased classifier. However,

his is not possible in all situations. To overcome the problem of

nbalanced number of images ( Lima, da Silva Filho, & dos Santos,

016 ) used linear combinations with random weights to generate

ynthetic instances of benign and malignant cases to balance their
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Table 5 

Synthesis of some of the main papers analyzed in this survey. 

Papers Contribution 

Meriem et al. (2015) The use of Zipf and inverse Zipf power laws for mammograms analysis in the field of segmentation and classification 

of masses. 

Li et al. (2015) Technique to classify masses without a previous segmentation of each mass. The proposed approach combines texton 

analysis with subsampling strategies. 

Kanadam and Chereddy (2016) A new representation of a ROI using a sparse-ROI, leading to a reduction in size of the ROI (number of pixels), 

computational time and feature space. 

Junior et al. (2009) The use of Morans index and Gearys coefficient measures, extracted from mammograms, as input to a SVM classifier. 

Xie et al. (2016) The use of SVM combined with Extreme Learning Machine to select the most powerful features and to classify masses. 

Jamieson et al. (2012) ; Ovalle et al. (2016) The use of deep learning technique or Adaptive Deconvolutional Networks for learning features avoiding the use of 

handcrafted features. 

Eltoukhy et al. (2010) A comparative study between curvelet and wavelet transform for masses discrimination. 

Hadjiiski et al. (2001) ; Timp, Varela, and 

Karssemeijer (2007) 

The employment of temporal changes in mammographic masses, using interval change information in the processes of 

masses classification. 

Mudigonda et al. (20 0 0) Representation of the mass using a polygonal modeling for the extraction of pixels across mass margins. 

Huo, Giger, and Vyborny (2001) The use of craniocaudal, mediolateral-oblique and special view (spot compression or spot compression magnification) 

to classify masses. 

Nandi et al. (2006) The use of genetic programming to select the most powerful features and to classify masses. 

Muramatsu et al. (2016) The use of radial local ternary patterns for classification of benign and malignant masses. 

Tan et al. (2014a) Investigation of a new approach to improve feature selection process and classifier optimization. 

Dhungel, Carneiro, and Bradley (2017) The use of deep learning methods for segmentation and classification of masses using handcrafted features. 

Lima et al. (2016) The use of Zernike moments extracted from decomposed image using multi-resolution wavelets to detect and classify 

lesions. 

Zhang et al. (2015) Creation of a Fourier Irregularity Index that has better performance than Compactness Index, Fractal Dimension and 

Fourier-descriptor-based shape Factor for mass classification. 

Abdel-Nasser et al. (2016) ; Bruce and 

Kallergi (1999) ; Rangayyan et al. (2010) 

Investigation of the effect of pixel resolution, preprocessing and feature normalization on the performance of methods 

for mass classification. 
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atabase. Another example of a study that used synthetic images

s Tralic et al. (2011) , as they used images manually drawn by spe-

ialists. 

.3. Features. Many researchers used wavelet features as input

o the classifiers and achieved good results. Some of the pa-

ers that used wavelet features were Bruce et al. (1999, 1999) ;

örgel, Sertbas, and Uçan (2013) ; Wagner, Elter, Schulz-Wendtland,

nd Wittenberg (2011) . Despite the good results, the authors

f Bruce et al. (1999) stated that a relatively large computa-

ional cost was involved when using this type of feature. In

ltoukhy et al. (2010) a comparison between wavelet and curvlet

eatures was presented, and curvlet presented a better classifica-

ion rate. It is important to note that Eltoukhy et al. (2010) was the

nly paper that used curvlet features and, as it presented a good

lassification rate of 94.07%, we believe that this type of feature

an be further explored. 

Features based on fractal analysis were used in some pa-

ers, for example, Beheshti, AhmadiNoubari, Fatemizadeh, and

halili (2014) ; Yang et al. (2005) . Beheshti et al. (2014) stated that

ractal features are useful to classify malignant masses in early

tages, which can help radiologists provide breast cancer diagno-

is sooner. Due to this special ability, fractal features could also be

urther explored in future researches. 

Texture and shape features were the two most common types

f features used to discriminate mammographic masses. Texture

eatures can be extracted using many different techniques such

s gray-level co-occurrence matrix, gray-level run-length matrix,

ray-level aura matrix, run-length statistics matrix and so on.

hape features are features that try to describe the shape of

asses, for example, area, perimeter, circularity, concavity or con-

exity indexes, spiculation index and so on. Malignant masses tend

o be more irregular and spiculated, while benign ones tend to

e more round and oval. Because of this fact, shape features are

idely used in the process of mass classification. Nevertheless,

hese types of features require using a good segmentation tech-

ique that is able to separate the mass from the background of a

OI. 
Automatic segmentation of masses can be a challenging task,

ainly in high breast density. For this reason, some masses need to

e manually segmented by experienced radiologists. To overcome

his problem, many papers used only texture features, for example

n Kanadam and Chereddy (2016) ; Mishra and Ranganathan (2014) ;

ohanty et al. (2013) . The fact is that when it is decided to use

nly shape features, you do need a good method of mass segmen-

ation and, even when this method is available, it will be diffi-

ult to deal with scenarios in which malignant masses have round

r oval shapes and when benignant masses have an irregular or

piculated structure. On the other hand, using only texture fea-

ures does not require such a precise mass segmentation method,

ut some important information is lost, once the vast majority of

enign masses are round and oval and malignant ones are irreg-

lar and spiculated. In order to not lose important information,

ome authors combined texture and shape features to discriminate

asses, for example in Delogu et al. (2007) ; Dong et al. (2015) ;

adjiiski et al. (2001) . 

Other authors tried a different approach and did not used fea-

ures extracted directly from the images, for example McLeod and

erma (2013) ; Wu et al. (2013) . Instead, they used information

rovided by the radiologist who analyzed the images. This infor-

ation is provided as BI-RADS descriptors of masses or patient in-

ormation, such as patient age, patient/family cancer history, pa-

ient treatment and so on. However, some papers presented the

ombination of shape, texture and textual information to classify

asses, for example Georgiou et al. (2007) ; Velthuizen and Gan-

adharan (20 0 0) ; Verma (20 08) . It is important to mention that

tudies that used only information provided by radiologists are ex-

remely dependent on this type of professional to provide the fea-

ures. On the other hand, the ones that did not use these features

an rely on techniques that are able to extract the features directly

rom the image automatically. 

Although the use of BI-RADS descriptors as features can im-

rove the accuracy of classification, the authors of Panchal and

erma (2006) discourage a classification system based only on

hese features or a combination with other patient information in

rder to avoid a system that is too human dependent. 
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5.4. Features selection. As the number of features increases

(wavelet, curvlet, fractal, shape, texture, textual), we fall into a

problem known as “the curse of dimensionality”. Thus, selecting

the most useful features is important in cases where there are fea-

tures that are meaningless to a specific problem. In general, when

more features are used as input to train the classifier, it takes

more time to complete this task, but it does not mean the clas-

sifier will be more accurate. Yet, a set of features can be redun-

dant, that is, they can have high correlation, thus only one fea-

ture of the set needs to be included. Furthermore, there are two

aspects that are important: 1) meaningless features are not only

useless, but can also include some noise decreasing the classifier

accuracy; ii) due to the curse of dimensionality, for a fixed size

of examples (instances), after a specific time the classifier accu-

racy decreases and the estimation error increases, due to the fact

that the number or examples is not big enough to estimate all

the parameters the classifier needs taking into consideration all

the combinations of features. On the other hand, there are times

when there are not enough different features to use and the alter-

native is to train the classifier using all the features available. In

addition to that, when some features are removed, some valuable

information may be lost, leading to a more inaccurate classifica-

tion. As it is a well-known problem in the area of machine learn-

ing and pattern recognition, many papers presented some tech-

niques to select the most useful features for masses discrimination,

for example in Hapfelmeier and Horsch (2011) ; Khan et al. (2017) ;

Khan et al. (2016) ; Tan, Pu, and Zheng (2014b) . Overall, the papers

that presented their results with and without feature selection ap-

proaches tend to show better results after applying feature selec-

tion techniques. 

In Table S1 in the supplementary material we can see all

the techniques used to select the most discriminative features. In

Tan et al. (2014a) , the authors implemented a sequential forward

floating selection (SFFS) that had the highest computational time

efficiency (3% - 5%) when compared to genetic algorithm. The au-

thors suggested that although genetic algorithm is a powerful tool

to be used in CAD systems, it is a very computationally inten-

sive method and using SFFS can improve the feature selection effi-

ciency. 

5.5. Gaps and challenges. As noticed during this review, most of

the studies used only one database. A possible problem when only

one database is used is that the classifier can be good to deal with

this database, but it may perform poorly with images from differ-

ent sources. Thus, one possible gap in this research area has to do

with creating more robust systems that can handle a wider vari-

ety of databases, which could increase the possibility of clinicians

using the systems on a daily basis. 

Another gap has to do with the creation of systems that can

learn and improve in on-line mode. The classifiers shown in most

of the papers can learn only in off-line mode or batch. The creation

of systems able to learn new patterns as new images are presented

in on-line mode could be very helpful for this area. 

No paper was found where the authors built a classifier using

grammars, syntactic approaches or graphs. Many researchers are

using these methods to deal with the problem of image classifi-

cation, but it seems that these techniques are not being employed

in mass classification. We believe that this gap can be further ex-

plored in future works. 

At the same time that some gaps were found, we also noticed

some recurring problems in some of the analyzed papers. The first

one is the lack of standardizing with relation of the metrics used

to evaluate the works. While accuracy and the AUC are the most

used metrics, we also found many other metrics, for example, sen-

sibility, specificity, precision, false positive rate, false negative rate

and so on. The problem identified here is the difficulty of compar-
ng a study that presents only the sensibility and specificity with

nother that presents only the AUC. This difficulty also makes it

ery hard to find the state of the art in this research area. 

Another common problem we point out is that in general the

esearchers do not compare the results obtained by the classifier

ith the results that are obtained by clinicians. For example, an ac-

uracy of 90% obtained by a classifier can be good or bad depend-

ng on the accuracy that could be obtained by a doctor analyzing

he same images, otherwise the system cannot be used on a daily

asis by clinicians. Here, we can question why this comparison is

ot performed. Maybe the doctors are not interested in this type

f research; maybe the researchers think the doctor’s evaluation is

ot important; or maybe it is just the lack of available clinicians. 

The next problem we found was the fact that in many papers

he method used during the tests is not clear or was not present.

n some cases, the authors made it quite clear they were using a

-fold cross validation, a leave one out method, a hold out method

nd so on. But it was quite common to find papers where the au-

hors simply did not mention which technique was used. Further-

ore, there were cases where it was hard to figure out if the same

mages were used during the training and the test phases. It is im-

ortant to bear in mind that this information is very useful, mainly

ecause when the tests are performed with the same images used

uring the training phase the results tend to be better. 

The last problem addresses the fact that some research groups

end to publish more than one paper with the same subject,

ut only with some changes made in the model. Sometimes the

hanges made are just a parameter, a feature or a different method

o select the most powerful features. We believe this is because

he researchers tend to prioritize the number of published papers

nstead of their quality. The vast amount of incomplete papers in-

reases the difficulties of finding complete ones, so we believe that

his is in fact a problem in this research area. 

During this systematic review we were able to verify the many

echniques used to classify tumors, the use of numerous differ-

nt databases, the many different features selected, several meth-

ds applied to reduce feature dimension, as well as different test

echniques and metrics used to test and evaluate the results. Be-

ause of the various methods, approaches and techniques, it is very

ifficult to quantitatively compare the results of one paper to the

thers, since they generally vary in many different aspects, for ex-

mple, database, segmentation techniques, features employed, ma-

hine learning techniques and so on. To perform a fair comparison

 common database would be necessary and the classifiers should

e built using exactly the same images. For instance, when using

-fold cross validation, the k folds should have the same images. 

. Conclusion 

The papers reviewed here allowed an extensive overview re-

arding the use of pattern recognition and machine learning tech-

iques to classify masses in mammograms. We believe there is

uch interest in this research area, since every year studies us-

ng a variety of different techniques and features are published.

oreover, many of the analyzed articles provided a recognition

ate higher than 90%, which shows this area may be reaching its

rime. 

Considering pattern recognition and machine learning tech-

iques, we showed that artificial neural network, support vector

achine and k-nearest neighbors dominate this area. Some tradi-

ional techniques, such as Naïve Bayes, logistic regression, random

orest were used in some studies, but they appeared at a very low

requency. 

We noticed that syntactic methods were not used in any of the

nalyzed papers and it can be considered a gap in this research

rea. Another gap is the fact that the majority of the studies used
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nly one database. Using different image sources can lead to the

reation of more robust classifiers. Lastly, the lack of classifiers that

an learn in an on-line mode can be considered another possible

ap in this research area. 

In addition, we identified some challenges to be overcome. We

an cite the lack of standardizing the metrics used to evaluated the

tudies, the absence of a benchmarking database or system to fa-

ilitate the comparison of classifiers, the majority of researchers do

ot compare their results with clinicians, quite often the method

sed to perform the training and tests are not clear, and the num-

er of incomplete published studies is very high. 

Finally, we would like to highlight how this research area is im-

ortant to society as a whole. Breast cancer is one of the main

ealth problems of our time and deserves attention from private

ompanies and public research institutes. With sooner and more

recise diagnosis, more women will survive this ordeal. 
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